
rustic user documentation

the rustic authors

Contents

1 Introduction 3

2 Contributing 4

3 Frequently asked questions 6
3.1 Comparison between rustic and restic . 7

4 Installation 17
4.1 Nightly builds . 18

5 How to install shell completions 21

6 Getting started 23

7 Init - Preparing a new repository 24
7.1 Local backend . 25
7.2 REST Server . 25
7.3 Other Services via rclone . 25
7.4 Cold storage . 26
7.5 Configuration file . 26

8 Backup - Backing up data 28
8.1 Creating snapshots . 28
8.2 File change detection . 29
8.3 Dry Run . 30
8.4 Excluding Files . 30
8.5 Comparing Snapshots . 31
8.6 Backup special items and metadata . 31
8.7 Reading data from StdIn . 32
8.8 Tags for backup . 32
8.9 Scheduling backups . 32
8.10 Space requirements . 32
8.11 Environment Variables . 33

9 Miscellaneous - Working with repositories 34
9.1 Listing snapshots . 34
9.2 Copying snapshots between repositories . 35
9.3 Filtering snapshots to copy . 36
9.4 Ensuring deduplication for copied snapshots . 36
9.5 Checking integrity and consistency . 37
9.6 Key - Manage repository keys . 38
9.7 Upgrading the repository format version . 39

1

10 Restore - Restoring from backup 40
10.1 Restore using mount . 40
10.2 Printing files to stdout . 41

11 Forget - Removing backup snapshots 42
11.1 Remove a single snapshot . 42
11.2 Removing snapshots according to a policy . 44
11.3 Security considerations in append-only mode . 47
11.4 Customize pruning . 47
11.5 Recovering from ”no free space” errors . 48

12 Stories 50

2

Chapter 1

Introduction

Rustic is a fast and secure backup program. In the following sections, we will present typical
workflows, starting with installing, preparing a new repository, and making the first backup.

Note: Parts of this documentation are shamelessly copied from the restic documentation and then
adapted to rustic as most workflows work in rustic exactly like restic. See also the restic documenta-
tion for more information about restic.

Contact

You can ask questions in the Discussions or have a look at the FAQ.

Contact Where?

Issue
Tracker

GitHub Issues

Discord rustic 74 members

Discus-
sions

GitHub Discussions

3

https://restic.readthedocs.io
https://restic.readthedocs.io
https://github.com/rustic-rs/rustic/discussions
https://github.com/rustic-rs/rustic/issues
https://discord.gg/WRUWENZnzQ
https://github.com/rustic-rs/rustic/discussions

Chapter 2

Contributing

Thank you for your interest in contributing to the rustic ecosystem!

We appreciate your help in making this project better.

Table of Contents

• Code of Conduct
• How to Contribute

– Reporting Bugs
– Issue and Pull Request Labels
– Suggesting Enhancements

• License

Code of Conduct

Please review and abide by the general Rust Community Code of Conduct when contributing to this
project. In the future, we might create our own Code of Conduct and supplement it at this location.

How to Contribute

Reporting Bugs

If you find a bug, please open an issue on GitHub and provide as much detail as possible. Include
steps to reproduce the bug and the expected behavior.

Issue and Pull Request labels

Our Issues and Pull Request labels follow the official Rust style:

A - Area
C - Category
D - Diagnostic
E - Call for participation
F - Feature
I - Issue e.g. I-crash

4

https://www.rust-lang.org/policies/code-of-conduct
https://github.com/rustic-rs/rustic/issues/new/choose

M - Meta
O - Operating systems
P - priorities e.g. P-{low, medium, high, critical}
PG - Project Group
perf - Performance
S - Status e.g. S-{blocked, experimental, inactive}
T - Team relevancy
WG - Working group

Suggesting Enhancements

If you have an idea for an enhancement or a new feature, we'd love to hear it! Open an issue on
GitHub and describe your suggestion in detail.

Developer's documentation

For more information about developing around rustic, see the developer's documentation.

License

By contributing to rustic or any crates contained in this repository, you agree that your contributions
will be licensed under:

• Apache License, Version 2.0
• MIT license.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the
work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any
additional terms or conditions.

5

https://github.com/rustic-rs/rustic/issues/new/choose
https://github.com/rustic-rs/rustic/issues/new/choose
https://rustic.cli.rs/dev-docs/
https://raw.githubusercontent.com/rustic-rs/rustic/main/LICENSE-APACHE
https://raw.githubusercontent.com/rustic-rs/rustic/main/LICENSE-MIT

Chapter 3

Frequently asked questions

• Can I use rustic with my existing restic repositories?
• What are the differences between rustic and restic?
• Why is rustic written in Rust
• How does rustic work with cold storages like AWS Glacier?
• How does the lock-free prune work?
• You said ”rustic uses less resources than restic” but I'm observing the opposite

Can I use rustic with my existing restic repositories?

Yes, you can. Rustic uses the same repository format as restic, so you can use rustic and restic on the
same repository. The only thing you have to take care of is that you don't run prune with restic and
rustic at the same time.

What are the differences between rustic and restic?

• Written in Rust instead of golang
• Optimized for small resource usage (in particular memory usage, but also overall CPU usage)
• Philosophy of development (release new features early)
• New features (e.g. hot/cold repositories, lock-free pruning)
• Some commands or options act a bit different or have slightly different syntax

Why is rustic written in Rust

Rust is a powerful language designed to build reliable and efficient software. This is a very good fit
for a backup tool.

How does rustic work with cold storages like AWS Glacier?

If you want to use cold storage, make sure you always specify an extra repository --repo-hot which
contains the hot data. This repository acts like a cache for all metadata, i.e. config/key/snapshot/index
files and tree packs. As all commands except restore only need to access the metadata, they are
fully functional but only need the cold storage to list files while everything else is read from the ”hot

6

repo”. Note that the ”hot repo” on its own is not a valid rustic repository. The ”cold repo”, however,
contains all files and is nothing but a standard rustic repository.

If you additionally use a cache, you effectively have a first level cache on your local disc and a second
level cache with the ”hot repo”. Note that the ”hot repo” can be also a remote repo, so hot/cold
repositories also work for multiple rustic clients backing up to the same repository.

How does the lock-free prune work?

Like the prune within restic, rustic decides for each pack whether to keep it, remove it or repack it.
Instead of removing packs, it however only marks the packs to remove in a separate index structure.
Packs which are marked for removal are checked if they are really not needed and have been marked
long enough ago. Depending on these checks they are either finally removed, recovered or kept in
the state of being marked for removal.

This two-phase deletion is needed for rustic to work lock-free: If a backup runs parallel to a prune
run (or forget --prune), it could be that prune decides that some blobs can be removed, but the
parallel backup uses these blobs for the newly generated snapshot.

The time to hold marked packs should be long enough to guarantee that a possibly parallel backup
run has finished in between. It can be set by the --keep-delete option and defaults to 23 hours. In
any case, packs will be kept marked and only deleted by the next prune run.

Note that there is the option --instant-delete which circumvents this two-phase deletion. Only
use this option, if you REALLY KNOW that there is no parallel access to your repo, else you risk
losing data!

You said ”rustic uses less resources than restic” but I'm observing

the opposite

In general rustic uses less resources, but there may be some exceptions. For instance the crypto
libraries of Rust and golang both have optimizations for some CPUs. But it might be that your CPU
benefits from a golang optimization which is not present in the Rust implementation. If you observe
some unexpected resource usage, please don't hesitate to submit an issue.

3.1 Comparison between rustic and restic

General differences

restic rustic

programming
language

Go Rust

test coverage � � (only few tests implemented)
config profile
support

� (wrapper tools available) �

locking lock files in repository lock-free operations, two-phase
pruning

cold storage � (no direct support, may work in
special cases)

� (full support including warm-up of
needed data)

in-repo config � � (see below for details)
logging -v or --quiet, no log-file support --log-level, supports log-file output

7

restic rustic

returns error
code

� �

available as
library

� � rustic_core

Storage backends

backend restic rustic

local � (built-in) � (built-in)
sftp � (using external ssh command) � (built-in using opendal, windows not

supported)
rest � (built-in) � (built-in)
s3 � (built-in) � (built-in using opendal)
swift � (built-in) � (built-in using opendal)
b2 � (built-in) � (built-in using opendal)
azure � (built-in) � (built-in using opendal)
gs � (built-in) � (built-in using opendal)
dropbox � � (built-in using opendal)
ftp � � (built-in using opendal)
gdrive � � (built-in using opendal)
onedrive � � (built-in using opendal)
webdav � � (built-in using opendal)
opendal (other
services)

� � (built-in using opendal)

rclone � (via stdin, using external
rclone command)

� (via http on localhost, using external
rclone command)

Commands

command restic rustic

backup � �
cache � �
cat � �
config � (no in-repo config) �
check � �
copy � �
diff � �
dump � �
find � �
forget � �
generate � � completions
init � �
key list � �
key add � �
key remove � �
key passwd � �
list � �
ls � �

8

command restic rustic

merge � �
migrate � � (not needed; repo version migration via config)
mount � � (WIP)
prune � �
recover � �
repair index � �
repair packs � �
repair
snapshots

� �

repoinfo � �
restore � �
rewrite � �
self-update � �
show-config � �
snapshots � �
stats � � (but there is repoinfo)
tag � �
unlock � lock-free
webdav � �

Information saved in snapshots

information restic rustic

from repo design info � �
program version used � �
summary (size,...) �

(WIP)
�

used command � �
label � �
description � �
delete (protection) � �

General options

option restic rustic

--cacert � �
--cache-dir � � (or in config profile)
--cleanup-cache � �
--compression � (auto,max,off); needed in

every call
� (-7..22) configure once in in-repo config

--dry-run � � (or in config profile)
--json � �
--key-hint � �
--limit-download � �
--limit-upload � �
--log-file � � (or in config profile)
--no-cache � � (or in config profile)

9

https://github.com/restic/restic/blob/master/doc/design.rst#snapshots

option restic rustic

--no-extra-
verify

� needed in every call � configure once using config

--no-lock � � all operations are lock-free
--no-progress � � (or in config profile)
--progress-
intervall

� (via env variable) � (or in config profile)

--option � as cmd arg or env variable � via config profile or env variable
--pack-size � fix limit; needed in every

call
� fix or dynamic limit, configure once in
in-repo config

--password-
command

� � (or in config profile)

--password-file � � (or in config profile)
--quiet � �
--repo � � (or in config profile)
--repo-hot � (no cold-storage support) � (or in config profile)
--repository-
file

� � (use repository in config profile
instead)

--retry-lock � not needed; lock-free
--tls-client-
cert

� �

--use-profile � (no config profile support) � (or in config profile for recursively using
profiles)

--verbose (multiple
times)

� � --log-level

--warm-up � (no cold-storage support) � (or in config profile)

rustic in-repo config options

option restic rustic

append_only � �
compression � (by --compression) �
treepack_size � (only all packs: --pack-size) �
treepack_growfactor � �
treepack_size_limit � �
datapack_size � (only all packs: --pack-size) �
datapack_growfactor � �
datapack_size_limit � �
min_packsize_tolerate_percent� (hardcoded 80% for prune --repack-small) �
max_packsize_tolerate_percent� �
extra_verify � (default, can be unset using --no-extra-verify) � (default)

Snapshot filtering

filter restic rustic (options also in config profile)

by host � --host � --filter-host
by label � � --filter-label
by paths � --paths � --filter-paths
by tags � --tags � --filter-tags

10

filter restic rustic (options also in config profile)

custom � � --filter-fn (using Rhai)

Comparison of important commands

init

option restic rustic

--copy-chunker-
params

� � (not needed, see copy command)

--from-* � � (not needed, see copy command)
--hostname � (always sets hostname) �
--repository-
version

� � (use --set-version)

--set-* � (no in-repo config support) �
--username � (always sets username) �
--with-created � (always sets creation time) �

backup

general restic rustic

allow to backup relative paths � �

option restic rustic (options also in config profile)

--as-path � �
--command � �
--custom-
ignorefile

� �

--description � �
--description-from � �
--delete-never � �
--delete-after � �
--exclude � � --glob
--exclude-file � � --glob-file
--exclude-caches � � (use --exclude-if-present)
--exclude-if-
present

� (+ support for header parsing) � (no header parsing)

--exclude-larger-
than

� �

--files-from � �
--files-from-raw � �
--files-from-
verbatim

� �

--force � �
--git-ignore � (roadmap: 0.19) �
--group-by � (host/paths/tags) � (host/label/paths/tags)
--host � �

11

https://rhai.rs/

option restic rustic (options also in config profile)

--iexclude � � --iglob
--iexclude-file � � --iglob-file
--ignore-ctime � �
--ignore-inode � �
--ignore-devid � �
--init � �
--label � �
--no-require-git � (no --git-ignore) �
--no-scan � �
--one-file-system � �
--parent � �
--read-concurrency � � (hardcoded)
--skip-identical-
parent

� �

--stdin � � (use - as backup source)
--stdin-filename � �
--tag � �
--time � �
--with-atime � �

restore

general restic rustic

scan and use already existing files � (roadmap: 0.17) �
resumable restore � (roadmap: 0.17) �
restore hard links � �
<snapshotID>:<subfolder> syntax � �
<snapshotID>:<subfolder>/file syntax � �

option restic rustic

filtering options for
latest

� �

--delete � �
--exclude � � --glob
--iexclude � � --iglob
--iinclude � � --iglob
--include � � --glob
--no-ownership � �
--numeric-id � �
--sparse � �
--target � � (give target as second CLI argument)
--verify � � (but diff can be used to verify

after)
--verify-existing � (no scanning of existing

files)
�

dump

12

general restic rustic

dump files � �
dump dirs � �

option restic rustic

snapshot filtering options for latest � �
--archive � � (no dumping of dirs)

forget

general restic rustic

allow to keep all XXX � �
respect ”no delete” options in snapshot � �

option restic rustic (options also in config profile)

snapshot filtering options � �
--keep-last � �
--keep-daily � �
--keep-weekly � �
--keep-monthly � �
--keep-quarter-yearly � �
--keep-half-yearly � �
--keep-yearly � �
--keep-within � �
--keep-within-hourly � �
--keep-within-daily � �
--keep-within-weekly � �
--keep-within-monthly � �
--keep-within-quarter-
yearly

� �

--keep-within-half-
yearly

� �

--keep-within-yearly � �
--keep-tag � �
--compact � �
--group-by � (host/paths/tags) � (host/label/paths/tags)
--prune � �

prune

general restic rustic

prune plan without reading pack files � �
prune parallel to backup (two-phase prune) � (roadmap: 0.19) �
different pack sizes for tree/data packs � �
resumable prune � (roadmap: 0.17) �

13

general restic rustic

(option to) resize packs � �

option restic rustic

--fast-repack � �
--instant-delete � (default, no

two-phase)
�

--keep-pack � �
--keep-delete � (no two-phase) �
--max-repack-size � � --max-repack (size/%/unlimited)
--max-unused � �
--repack-all � �
--repack-cacheable-
only

� �

--repack-small � � (default behavior; to unset use
--no-resize)

--repack-uncompressed � �
--unsafe-recover-no-
free-space

� � --early-delete-index

check

general restic rustic

check index files � �
check index vs packs � �
check snapshot files � �
(optionally) check pack files � �
cache policy create temporary (use existing: roadmap 0.18) use existing
check cache integrity � �
check hot/cold integrity � (no cold storage support) �

option restic rustic

--read-data � �
--read-data-subset � �
--trust-cache � (no cache integrity check) �
--with-cache � � (default behavior)

copy

general restic rustic

source/target given by CLI options in config profile
multiple targets � �
check for matching chunker parameters � �

14

option restic rustic

snapshot filtering
options

� �

--from-* � (target is --repository) � (source is --repository, target in
config profile)

--init � (extra run of init
--copy-chunker-params)

�

snapshots

general restic rustic

summarize identical snapshots (like +3) � �
show summary information (sizes) � (WIP) �

option restic rustic

snapshot filtering options � �
--all � �
--compact � �
--group-by � (host/paths/tags) � (host/label/paths/tags)
--latest � �
--long � �

ls

option restic rustic

snapshot filtering options for latest � �
--glob � �
--glob-file � �
--human-readable � �
--iglob � �
--iglob-file � �
--long � �
--numeric-uid-gid � �
--summary � �
--recursive � �

diff

general restic rustic

allow latest � �
diff with local files � �
<snapshotID>:<subfolder> syntax � �
<snapshotID>:<subfolder>/file syntax � �

15

option restic rustic

snapshot filtering options for latest � (no latest support) �
--glob � �
--glob-file � �
--iglob � �
--iglob-file � �
--metadata � �
--no-content � �
exclude options for local files � (no diff with local files) �

16

Chapter 4

Installation

• Official Binaries
– Stable Releases
– Unstable Builds

• From Source

Official Binaries

Stable Releases

cargo-binstall

cargo binstall rustic-rs

Windows

Scoop

scoop install rustic

You can download the latest stable release versions of rustic from the rustic release page. These
builds are considered stable and releases are made regularly in a controlled manner.

There's both pre-compiled binaries for different platforms as well as the source code available for
download. Just download and run the one matching your system.

Once downloaded, the official binaries can be updated in place using the rustic self-update
command (needs rustic 0.3.1 or later):

$ rustic self-update
Checking target-arch... x86_64-unknown-linux-musl
Checking current version... v0.3.0-dev
Checking latest released version... v0.3.1
New release found! v0.3.0-dev --> v0.3.1
New release is *NOT* compatible

rustic release status:
* Current exe: "/usr/local/bin/rustic"
* New exe release: "rustic-v0.3.1-x86_64-unknown-linux-musl.tar.gz"
* New exe download url:
"https://api.github.com/repos/rustic/rustic/releases/assets/75146490"↪

17

https://crates.io/crates/cargo-binstall
https://scoop.sh/
https://github.com/rustic-rs/rustic/releases/latest

The new release will be downloaded/extracted and the existing binary will be
replaced.↪

Do you want to continue? [Y/n] Y
Downloading...
[00:00:00] [==] 4.29MiB/4.29MiB (0s)

Done↪

Extracting archive... Done
Replacing binary file... Done
Update status: `0.3.1`!

Note: Please be aware that the user executing the rustic self-update command must have the
permission to replace the rustic binary.

Unstable Builds

Another option is to use the nightly builds for the main branch, available on the nightly download
page. These too are pre-compiled and ready to run, and a new version is built every night from the
main branch of various repositories.

From Source

Beware: This installs the latest development version, which might be unstable.

rustic is written in Rust and you need a current Rust version.

In order to build rustic from source, execute the following steps:

Github

cargo install --git https://github.com/rustic-rs/rustic.git rustic-rs

crates.io

You can also directly install the latest crate from crates.io.

cargo install rustic-rs

Cross-compile

You can easily cross-compile rustic for all supported platforms, make sure that the cross-compile
toolchain is installed for your target. Then run the build for your chosen target like this

cargo build --target aarch64-unknown-linux-gnu --release

4.1 Nightly builds

Nightly builds of rustic's, rustic_server's, and rustic_scheduler's main branch are available here for
download.

WARNING: These builds are not guaranteed to be stable, and may contain bugs. Use at your own
risk.

18

https://github.com/rustic-rs/nightly
https://github.com/rustic-rs/nightly

Verification

Minisign/Rsign2

Install

• rsign2 with cargo install rsign2 or
• minisign with scoop install minisign (on Windows, check other installation instructions

here).

Run

rsign verify <filename>.tar.gz \
-x <filename>.tar.gz.sig \
-P RWSWSCEJEEacVeCy0va71hlrVtiW8YzMzOyJeso0Bfy/ZXq5OryWi/8T

PGP

Download our public key or copy and paste it from below:

wget https://github.com/rustic-rs/nightly/raw/main/pub/pgp.pub

Check the fingerprint:

12B7166D9FD59124416952E34018C5DE3BF8C081

against the output of: gpg --show-keys <PUBLIC_KEY_FILE>

Import the key with gpg --import <PUBLIC_KEY_FILE>

Verify the signature with gpg --verify <filename>.tar.gz.asc <filename>.tar.gz

The output should say “Good Signature”.

Note: We use the .asc extension for the files because .sig was already taken for supporting
minisign used by cargo-binstall.

Status

Download matrix

Plat-
form rustic rustic_scheduler rustic_server

Linux
x86_64
/

gnu

� # � � � # � � � # � �

Linux
x86_64
/

musl
(static)

� # � � � # � � � # � �

Linux
i686
/

gnu

� # � � � # � � � # � �

19

https://jedisct1.github.io/minisign/
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-unknown-linux-gnu.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-unknown-linux-gnu.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-unknown-linux-gnu.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-unknown-linux-gnu.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-unknown-linux-gnu.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-unknown-linux-gnu.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-unknown-linux-gnu.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-unknown-linux-gnu.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-unknown-linux-gnu.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-unknown-linux-musl.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-unknown-linux-musl.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-unknown-linux-musl.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-unknown-linux-musl.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-unknown-linux-musl.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-unknown-linux-musl.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-unknown-linux-musl.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-unknown-linux-musl.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-unknown-linux-musl.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-i686-unknown-linux-gnu.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-i686-unknown-linux-gnu.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-i686-unknown-linux-gnu.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-i686-unknown-linux-gnu.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-i686-unknown-linux-gnu.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-i686-unknown-linux-gnu.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-i686-unknown-linux-gnu.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-i686-unknown-linux-gnu.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-i686-unknown-linux-gnu.tar.gz.asc

Plat-
form rustic rustic_scheduler rustic_server

Linux
aarch64
/

gnu

� # � � � # � � � # � �

Linux
armv7
/

rasp-
berry
pi

� # � � � # � � � # � �

Ma-
cOS
x86_64

� # � � � # � � � # � �

Ma-
cOS
aarch64

� # � � � # � � n.a., #6

Win-
dows
x86_64
/

msvc
(exp)

� # � � � # � � � # � �

Win-
dows
x86_64
/

gnu
(exp)

� # � � � # � � � # � �

20

https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-aarch64-unknown-linux-gnu.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-aarch64-unknown-linux-gnu.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-aarch64-unknown-linux-gnu.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-aarch64-unknown-linux-gnu.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-aarch64-unknown-linux-gnu.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-aarch64-unknown-linux-gnu.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-aarch64-unknown-linux-gnu.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-aarch64-unknown-linux-gnu.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-aarch64-unknown-linux-gnu.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-armv7-unknown-linux-gnueabihf.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-armv7-unknown-linux-gnueabihf.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-armv7-unknown-linux-gnueabihf.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-armv7-unknown-linux-gnueabihf.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-armv7-unknown-linux-gnueabihf.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-armv7-unknown-linux-gnueabihf.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-armv7-unknown-linux-gnueabihf.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-armv7-unknown-linux-gnueabihf.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-armv7-unknown-linux-gnueabihf.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-apple-darwin.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-apple-darwin.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-apple-darwin.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-apple-darwin.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-apple-darwin.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-apple-darwin.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-apple-darwin.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-apple-darwin.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-apple-darwin.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-aarch64-apple-darwin.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-aarch64-apple-darwin.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-aarch64-apple-darwin.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-aarch64-apple-darwin.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-aarch64-apple-darwin.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-aarch64-apple-darwin.tar.gz.asc
https://github.com/rustic-rs/rustic_server/issues/6
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-pc-windows-msvc.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-pc-windows-msvc.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-pc-windows-msvc.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-pc-windows-msvc.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-pc-windows-msvc.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-pc-windows-msvc.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-pc-windows-msvc.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-pc-windows-msvc.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-pc-windows-msvc.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-pc-windows-gnu.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-pc-windows-gnu.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic/rustic-nightly-x86_64-pc-windows-gnu.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-pc-windows-gnu.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-pc-windows-gnu.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_scheduler/rustic-scheduler-nightly-x86_64-pc-windows-gnu.tar.gz.asc
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-pc-windows-gnu.tar.gz
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-pc-windows-gnu.tar.gz.sha256
https://github.com/rustic-rs/nightly/raw/main/rustic_server/rustic-server-nightly-x86_64-pc-windows-gnu.tar.gz.asc

Chapter 5

How to install shell completions

• Bash
• Fish
• Powershell

– Linux
– Windows
– macOs

• Zsh

All completion files are generated by invoking rustic completions command. So run:

Bash

rustic completions bash > /etc/bash_completion.d/rustic.bash

Fish

rustic completions fish > $HOME/.config/fish/completions/rustic.fish

Powershell

Linux

rustic completions powershell >>
~/.config/powershell/Microsoft.PowerShell_profile.ps1.↪

Windows

rustic completions powershell >>
$HOME\Documents\PowerShell\Microsoft.PowerShell_profile.ps1.↪

macOs

rustic completions powershell >>
~/.config/powershell/Microsoft.PowerShell_profile.ps1↪

21

Zsh

ZSH completions are commonly stored in any directory listed in your $fpath variable. To use these
completions, write completions script (_rustic) to one of those directories, or add your own to this
list.

This list includes, for example, these directories:

• /usr/local/share/zsh/site-functions
• /usr/share/zsh/site-functions

So you can run:

rustic completions zsh > /usr/local/share/zsh/site-functions/_rustic

22

Chapter 6

Getting started

Contribution needed: We would like to add a written getting started guid here. If you are interested
in helping, please check this issue.

23

https://github.com/rustic-rs/docs/issues/2

Chapter 7

Init - Preparing a new repository

The place where your backups will be saved is called a ”repository”. This chapter explains how to
create (”init”) such a repository. The repository can be stored locally, or on some remote server or
service. We'll first cover using a local repository; the remaining sections of this chapter cover all the
other options. You can skip to the next chapter once you've read the relevant section here.

For automated backups, rustic accepts the repository location in the environment variable
RUSTIC_REPOSITORY.

For the password, several options exist:

• Setting the environment variable RUSTIC_PASSWORD

• Specifying the path to a file with the password via the option --password-file or the envi-
ronment variable RUSTIC_PASSWORD_FILE

• Configuring a program to be called when the password is needed via the option --password-
command or the environment variable RUSTIC_PASSWORD_COMMAND

The init command has an option called --set-version which can be used to explicitly set the
version for the new repository.

The below table shows which rustic version is required to use a certain repository version and shows
new features introduced by the repository format.

Repository version Minimum rustic version Major new features

1 any version
2 >=0.2.0 Compression support

Moreover, there are different options which can be set when initializing a repository:

Options to specify the target pack size:

• --set-treepack-size, --set-datapack-size specify the default target pack size for tree
and data pack files. Arguments can given using TODO For example, valid sizes are ”4048kiB”,
”2MB”, ”30MiB”, etc. If not specified, the default is 4 MiB for tree packs and 32 MiB for data
packs.

• --set-treepack-growfactor, --set-datapack-growfactor specify how much the target
pack size should be increased per square root of the total pack size in bytes of the given type.
This equals to 32kiB per square root of the total pack size in GiB.

24

Note that larger pack sizes have advantages, especially for large repository or remote repositories.
They lead to less packs in the repository and transfer larger datasets to the repository which can
increase the throughput. But there are also disadvantages. Rustic keeps the whole pack in memory
before writing it to the backend. As writes are parallelized, multiple packs are kept. So larger
pack sizes increase the memory usage of the backup command. Moreover larger pack sizes lead to
increased repack rates during prune or forget --prune.

7.1 Local backend

In order to create a repository at /srv/rustic-repo, run the following command and enter the
same password twice:

$ rustic init -r /srv/rustic-repo
enter password for new repository:
created rustic repository 085b3c76b9 at /srv/rustic-repo

Warning: Remembering your password is important! If you lose it, you won't be able to access data
stored in the repository.

7.2 REST Server

In order to backup data to the remote server via HTTP or HTTPS protocol, you must first set up a
remote REST server instance. Once the server is configured, accessing it is achieved by changing the
URL scheme like this:

rustic -r rest:http://host:8000/ init

Depending on your REST server setup, you can use HTTPS protocol, password protection, multiple
repositories or any combination of those features. The TCP/IP port is also configurable. Here are
some more examples:

rustic -r rest:https://host:8000/ init
rustic -r rest:https://user:pass@host:8000/ init
rustic -r rest:https://user:pass@host:8000/my_backup_repo/ init

If you use TLS, rustic will use the system's CA certificates to verify the server certificate. When the
verification fails, rustic refuses to proceed and exits with an error. If you have your own self-signed
certificate, or a custom CA certificate should be used for verification, you can pass rustic the certificate
filename via the --cacert option. It will then verify that the server's certificate is contained in the
file passed to this option, or signed by a CA certificate in the file. In this case, the system CA certificates
are not considered at all.

REST server uses exactly the same directory structure as local backend, so you should be able to
access it both locally and via HTTP, even simultaneously.

7.3 Other Services via rclone

The program rclone can be used to access many other different services and store data there.
First, you need to install and configure rclone. The general backend specification format is
rclone:<remote>:<path>, the <remote>:<path> component will be directly passed to rclone.
When you configure a remote named foo, you can then call rustic as follows to initiate a new
repository in the path bar in the repo:

rustic -r rclone:foo:bar init

25

https://github.com/rustic-rs/rust-server

rustic takes care of starting and stopping rclone.

As a more concrete example, suppose you have configured a remote named b2prod for Backblaze
B2 with rclone, with a bucket called yggdrasil. You can then use rclone to list files in the bucket
like this:

rclone ls b2prod:yggdrasil

In order to create a new repository in the root directory of the bucket, call rustic like this:

rustic -r rclone:b2prod:yggdrasil init

If you want to use the path foo/bar/baz in the bucket instead, pass this to rustic:

rustic -r rclone:b2prod:yggdrasil/foo/bar/baz init

Listing the files of an empty repository directly with rclone should return a listing similar to the
following:

$ rclone ls b2prod:yggdrasil/foo/bar/baz
155 bar/baz/config
448
bar/baz/keys/4bf9c78049de689d73a56ed0546f83b8416795295cda12ec7fb9465af3900b44↪

Rclone can be configured with environment variables_, so for instance configuring a band-
width limit for rclone can be achieved by setting the RCLONE_BWLIMIT environment variable:

export RCLONE_BWLIMIT=1M

For debugging rclone, you can set the environment variable RCLONE_VERBOSE=2.

7.4 Cold storage

Rustic supports to store the repository in a so-called cold storage. These are storages which are
designed for long-term storage and offer usually cheap storage for the price of retarded or expensive
access. Examples are Amazon S3 Glacier or OVH Cloud Archive.

To use a cold storage and not access any data in the storage for every-day operations, rustic needs an
extra repository to store hot data. This repository can be specified by the --hot-repo option or the
RUSTIC_REPO_HOT environmental variable, e.g.:

rustic -r rclone:foo:bar --repo-hot rclone:foo:bar-hot init

In this example in the repository rclone:foo:bar all data is saved. In the repository
rclone:foo:bar-hot only hot data is saved, i.e. this is not a complete repository.

Warning: You have to specify both the cold repository (using -r) and the hot repository (using --
repo-hot) in the init command and all other commands which access and work with the repository.

7.5 Configuration file

Important: For always up-to-date information, please make sure to check the in-repository docu-
mentation for the config files available here.

Rustic supports configuration files in the TOML format. The files are searched in the following
locations:

• the global rustic config dir (on unix typically /etc/rustic)
• the users' rustic config dir. On unix this is typically $HOME/.config/rustic, see https://docs.r

s/directories/latest/directories/struct.ProjectDirs.html for more details about the config location.

26

https://github.com/rustic-rs/rustic/blob/main/config/README.md
https://docs.rs/directories/latest/directories/struct.ProjectDirs.html
https://docs.rs/directories/latest/directories/struct.ProjectDirs.html

• the current working dir

By default, rustic uses the file rustic.toml. This can be overwritten by the -P <PROFILE> option
which tells rustic to search for a <PROFILE>.toml configuration file. For example, if you have a
local.toml configuration for backing up to a local dir and a remote.toml configuration for a
remote storage, you can use rustic -P local <COMMAND> and rustic -P remote <COMMAND>,
respectively to switch between you two backup configurations.

Note that options in the config file can always be overwritten by ENV

In the configuration file, you can specify all global and repository-specific options as well as op-
tions/sources for the backup command and forget options. Using a config file like

rustic config file to backup /home and /etc to a local repository

[repository]
repository = "/backup/rustic"
password-file = "/root/key-rustic"
no-cache = true # no cache needed for local repository

[forget]
keep-daily = 14
keep-weekly = 5

[backup]
exclude-if-present = [".nobackup", "CACHEDIR.TAG"]
glob-file = ["/root/rustic-local.glob"]

[[backup.sources]]
source = "/home"
git-ignore = true

[[backup.sources]]
source = "/etc"

allows you to use rustic backup and rustic forget --prune in your regularly backup/cleanup
scripts.

For more config file examples check the config here

27

https://github.com/rustic-rs/rustic/tree/main/config

Chapter 8

Backup - Backing up data

Backing up your data is important. This guide will show you how to backup your data. And what
else you can do with rustic.

8.1 Creating snapshots

Now we're ready to backup some data. The contents of a directory at a specific point in time is called
a ”snapshot” in rustic. Run the following command and enter the repository password you chose
above again:

$ rustic -r /srv/rustic-repo --verbose backup ~/work
open repository
enter password for repository:
password is correct
lock repository
load index files
start scan
start backup
scan finished in 1.837s
processed 1.720 GiB in 0:12
Files: 5307 new, 0 changed, 0 unmodified
Dirs: 1867 new, 0 changed, 0 unmodified
Added: 1.200 GiB
snapshot 40dc1520 saved

As you can see, rustic created a backup of the directory and was pretty fast! The specific snapshot
just created is identified by a sequence of hexadecimal characters, 40dc1520 in this case.

You can see that rustic tells us it processed 1.720 GiB of data, this is the size of the files and directories
in ~/work on the local file system. It also tells us that only 1.200 GiB was added to the repository.
This means that some of the data was duplicate and rustic was able to efficiently reduce it.

If you don't pass the --verbose option, rustic will print less data. You'll still get a nice live status dis-
play. Be aware that the live status shows the processed files and not the transferred data. Transferred
volume might be lower (due to de-duplication) or higher.

If you run the backup command again, rustic will create another snapshot of your data, but this time
it's even faster and no new data was added to the repository (since all data is already there). This is
de-duplication at work!

28

$ rustic -r /srv/rustic-repo --verbose backup ~/work
open repository
enter password for repository:
password is correct
lock repository
load index files
using parent snapshot d875ae93
start scan
start backup
scan finished in 1.881s
processed 1.720 GiB in 0:03
Files: 0 new, 0 changed, 5307 unmodified
Dirs: 0 new, 0 changed, 1867 unmodified
Added: 0 B
snapshot 79766175 saved

You can even backup individual files in the same repository (not passing --verbose means less
output):

$ rustic -r /srv/rustic-repo backup ~/work.txt
enter password for repository:
password is correct
snapshot 249d0210 saved

Now is a good time to run rustic check to verify that all data is properly stored in the repository.
You should run this command regularly to make sure the internal structure of the repository is free
of errors.

8.2 File change detection

When rustic encounters a file that has already been backed up, whether in the current backup or
a previous one, it makes sure the file's contents are only stored once in the repository. To do so, it
normally has to scan the entire contents of every file. Because this can be very expensive, rustic also
uses a change detection rule based on file metadata to determine whether a file is likely unchanged
since a previous backup. If it is, the file is not scanned again.

Change detection is only performed for regular files (not special files, symlinks or directories) that
have the exact same path as they did in a previous backup of the same location. If a file or one of its
containing directories was renamed, it is considered a different file and its entire contents will be
scanned again.

Metadata changes (permissions, ownership, etc.) are always included in the backup, even if file
contents are considered unchanged.

On Unix (including Linux and Mac), given that a file lives at the same location as a file in a previ-
ous backup, the following file metadata attributes have to match for its contents to be presumed
unchanged:

• Modification timestamp (mtime).
• Metadata change timestamp (ctime).
• File size.
• Inode number (internal number used to reference a file in a filesystem).

The reason for requiring both mtime and ctime to match is that Unix programs can freely change
mtime (and some do). In such cases, a ctime change may be the only hint that a file did change.

The following rustic backup command line flags modify the change detection rules:

29

• --force: turn off change detection and rescan all files.
• --ignore-ctime: require mtime to match, but allow ctime to differ.
• --ignore-inode: require mtime to match, but allow inode number and ctime to differ.

The option --ignore-inode exists to support FUSE-based filesystems and pCloud, which do not
assign stable inodes to files.

Note that the device id of the containing mount point is never taken into account. Device numbers
are not stable for removable devices and ZFS snapshots. If you want to force a re-scan in such a case,
you can change the mountpoint.

8.3 Dry Run

You can perform a backup in dry run mode to see what would happen without modifying the repo.

• --dry-run/-n Report what would be done, without writing to the repository

8.4 Excluding Files

You can exclude folders and files by specifying exclude patterns, currently the exclude options are:

• --git-ignore Respect .gitignore files and exclude paths/files not handled by git.
• --glob include/exclue files and dirs based on given glob patterns
• --iglob Same as --glob but ignores the case of paths
• --glob-file Specified one or more times to exclude items listed in a given file
• --iglob-file Same as --glob-file but ignores cases like in --iglob
• --exclude-if-present foo Specified one or more times to exclude a folder's content if it

contains a file called foo. For example, to exclude cache dirs, specify --exclude-if-present
CACHEDIR.TAG.

• --exclude-larger-than size Specified once to excludes files larger than the given size

Please see rustic help backup for more specific information about each exclude option.

Let's say we have a file called glob.txt with the following content:

exclude go-files
!*.go
exclude foo/x/y/z/bar foo/x/bar foo/bar
!foo/**/bar

It can be used like this:

rustic -r /srv/rustic-repo backup ~/work --glob="!*.c" --glob-file=glob.txt

This instructs rustic to exclude files matching the following criteria:

• All files matching *.c (parameter --glob)
• All files matching *.go (second line in glob.txt)
• All files and sub-directories named bar which reside somewhere below a directory called foo

(fourth line in glob.txt)

By specifying the option --one-file-system you can instruct rustic to only backup files from the
file systems the initially specified files or directories reside on. In other words, it will prevent rustic
from crossing filesystem boundaries and subvolumes when performing a backup.

For example, if you backup / with this option and you have external media mounted under
/media/usb then rustic will not back up /media/usb at all because this is a different filesystem

30

than /. Virtual filesystems such as /proc are also considered different and thereby excluded when
using --one-file-system:

rustic -r /srv/rustic-repo backup --one-file-system /

Please note that this does not prevent you from specifying multiple filesystems on the command line,
e.g:

rustic -r /srv/rustic-repo backup --one-file-system / /media/usb

will back up both the / and /media/usb filesystems, but will not include other filesystems like /sys
and /proc.

Note: --one-file-system is currently unsupported on Windows, and will cause the backup to
immediately fail with an error.

Files larger than a given size can be excluded using the --exclude-larger-than option:

rustic -r /srv/rustic-repo backup ~/work --exclude-larger-than 1M

This excludes files in ~/work which are larger than 1 MiB from the backup.

The default unit for the size value is bytes, so e.g. --exclude-larger-than 2048 would exclude
files larger than 2048 bytes (2 KiB). To specify other units, suffix the size value with one of k/K for KiB
(1024 bytes), m/M for MiB (1024^2 bytes), g/G for GiB (1024^3 bytes) and t/T for TiB (1024^4 bytes), e.g.
1k, 10K, 20m, 20M, 30g, 30G, 2t or 2T).

8.5 Comparing Snapshots

Rustic has a diff command which shows the difference between two snapshots or a snapshot and a
local path/dir

$ rustic -r /srv/rustic-repo diff 5845b002 2ab627a6
password is correct
comparing snapshot ea657ce5 to 2ab627a6:

C /rustic/cmd_diff.go
+ /rustic/foo
C /rustic/rustic

8.6 Backup special items and metadata

Symlinks are archived as symlinks, rustic does not follow them. When you restore, you get the
same symlink again, with the same link target and the same timestamps.

If there is a bind-mount below a directory that is to be saved, rustic descends into it.

Device files are saved and restored as device files. This means that e.g. /dev/sda is archived as a
block device file and restored as such. This also means that the content of the corresponding disk is
not read, at least not from the device file.

By default, rustic does not save the access time (atime) for any files or other items, since it is not
possible to reliably disable updating the access time by rustic itself. This means that for each new
backup a lot of metadata is written, and the next backup needs to write new metadata again. If you
really want to save the access time for files and directories, you can pass the --with-atime option
to the backup command.

Note that rustic does not back up some metadata associated with files. Of particular note are::

31

• file creation date on Unix platforms
• inode flags on Unix platforms
• xattr information

8.7 Reading data from StdIn

Sometimes it can be nice to directly save the output of a program, e.g. mysqldump so that the SQL
can later be restored. Rustic supports this mode of operation, just supply - as backup source to the
backup command like this:

set -o pipefail
mysqldump [...] | rustic backup -

This creates a new snapshot of the output of mysqldump. You can then use e.g. the fuse mounting
option (see below) to mount the repository and read the file.

By default, the file name stdin is used, a different name can be specified with --stdin-filename,
e.g. like this:

mysqldump [...] | rustic --stdin-filename production.sql -

The option pipefail is highly recommended so that a non-zero exit code from one of the programs
in the pipe (e.g. mysqldump here) makes the whole chain return a non-zero exit code. Refer to the
Use the Unofficial Bash Strict Mode <http://redsymbol.net/articles/unofficial-
bash-strict-mode/>__ for more details on this.

8.8 Tags for backup

Snapshots can have one or more tags, short strings which add identifying information. Just specify
the tags for a snapshot one by one with --tag:

$ rustic -r /srv/rustic-repo backup --tag projectX --tag foo --tag bar ~/work
[...]

The tags can later be used to keep (or forget) snapshots with the forget command. The command
tag can be used to modify tags on an existing snapshot.

8.9 Scheduling backups

Rustic does not have a built-in way of scheduling backups, as it's a tool that runs when executed rather
than a daemon. There are plenty of different ways to schedule backup runs on various different
platforms, e.g. systemd and cron on Linux/BSD and Task Scheduler in Windows, depending on one's
needs and requirements. When scheduling rustic to run recurringly, please make sure to detect
already running instances before starting the backup.

8.10 Space requirements

Rustic currently assumes that your backup repository has sufficient space for the backup operation
you are about to perform. This is a realistic assumption for many cloud providers, but may not be
true when backing up to local disks.

Should you run out of space during the middle of a backup, there will be some additional data in the
repository, but the snapshot will never be created as it would only be written at the very (successful)
end of the backup operation. Previous snapshots will still be there and will still work.

32

8.11 Environment Variables

Important: For always up-to-date information, please make sure to check the in-repository docu-
mentation for the config files available here.

In addition to command-line options, rustic supports passing various options in environment vari-
ables. The following lists these environment variables:

RUSTIC_REPOSITORY Location of repository (replaces -r)
RUSTIC_REPO_HOT Location of hot repository (replaces

-repo-hot)↪

RUSTIC_PASSWORD The actual password for the repository
(replaces --password)↪

RUSTIC_PASSWORD_FILE Location of password file (replaces
--password-file)↪

RUSTIC_PASSWORD_COMMAND Command printing the password for the
repository to stdout (replaces --password-command)↪

RUSTIC_CACHE_DIR Location of the cache directory (replaces
--cache-dir)↪

RUSTIC_NO_CACHE Use no cache (replaces --no-cache)

rustic may execute rclone (for rclone backends) which may respond to further environment vari-
ables and configuration files.

33

https://github.com/rustic-rs/rustic/blob/main/config/README.md

Chapter 9

Miscellaneous - Working with
repositories

A repository is a storage location for all of your snapshots.

The repository is created with the init command:

$ rustic -r /srv/rustic-repo init
enter password for new repository:
enter password again:
created rustic repository 7a8c3b2a0c at /srv/rustic-repo
Please note that knowledge of your password is required to access
the repository. Losing your password means that your data is
irrecoverably lost.

The repository is now ready for use.

Note: In case you are using the rclone backend, please see the rclone-backend section for additional
information.

9.1 Listing snapshots

To list all snapshots in the repository, use the snapshots command:

$ rustic -r /srv/rustic-repo snapshots
enter password for repository:
ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
bdbd3439 2015-05-08 21:45:17 luigi /home/art
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

You can filter the listing by directory path:

$ rustic -r /srv/rustic-repo snapshots --path="/srv"
enter password for repository:
ID Date Host Tags Directory
--

34

590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

Or filter by host:

$ rustic -r /srv/rustic-repo snapshots --host luigi
enter password for repository:
ID Date Host Tags Directory
--
bdbd3439 2015-05-08 21:45:17 luigi /home/art
9f0bc19e 2015-05-08 21:46:11 luigi /srv

Combining filters is also possible.

Furthermore you can group the output by the same filters (host, paths, tags):

$ rustic -r /srv/rustic-repo snapshots --group-by host

enter password for repository:
snapshots for (host [kasimir])
ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
2 snapshots
snapshots for (host [luigi])
ID Date Host Tags Directory
--
bdbd3439 2015-05-08 21:45:17 luigi /home/art
9f0bc19e 2015-05-08 21:46:11 luigi /srv
2 snapshots
snapshots for (host [kazik])
ID Date Host Tags Directory
--
590c8fc8 2015-05-08 21:47:38 kazik /srv
1 snapshots

9.2 Copying snapshots between repositories

In case you want to transfer snapshots between two repositories, for example from a local to a remote
repository, you can use the copy command:

$ rustic -r /srv/rustic-repo copy --repo2 /srv/rustic-repo-copy
repository d6504c63 opened successfully, password is correct
repository 3dd0878c opened successfully, password is correct

snapshot 410b18a2 of [/home/user/work] at 2020-06-09 23:15:57.305305 +0200
CEST)↪

copy started, this may take a while...
snapshot 7a746a07 saved

snapshot 4e5d5487 of [/home/user/work] at 2020-05-01 22:44:07.012113 +0200
CEST)↪

skipping snapshot 4e5d5487, was already copied to snapshot 50eb62b7

The example command copies all snapshots from the source repository /srv/rustic-repo to the

35

destination repository /srv/rustic-repo-copy. Snapshots which have previously been copied
between repositories will be skipped by later copy runs.

Important: This process will have to both download (read) and upload (write) the entire snapshot(s)
due to the different encryption keys used in the source and destination repository. This may incur
higher bandwidth usage and costs than expected during normal backup runs.

Important: The copying process does not re-chunk files, which may break deduplication between
the files copied and files already stored in the destination repository. This means that copied files,
which existed in both the source and destination repository, may occupy up to twice their space in the
destination repository. See below for how to avoid this.

The destination repository is specified with --repo or can be read from a file specified
via --repository-file. Both of these options can also set as environment variables
$RUSTIC_REPOSITORY or $RUSTIC_REPOSITORY_FILE respectively. For the destination
repository the password can be read from a file --password-file or from a command --
password-command. Alternatively the environment variables $RUSTIC_PASSWORD_COMMAND
and $RUSTIC_PASSWORD_FILE can be used. It is also possible to directly pass the password via
$RUSTIC_PASSWORD. The key which should be used for decryption can be selected by passing its ID
via the flag --key-hint or the environment variable $RUSTIC_KEY_HINT.

Note: In case the source and destination repository use the same backend, the configuration options
and environment variables used to configure the backend may apply to both repositories – for example
it might not be possible to specify different accounts for the source and destination repository. You
can avoid this limitation by using the rclone backend along with remotes which are configured in
rclone.

9.3 Filtering snapshots to copy

The list of snapshots to copy can be filtered by host, path in the backup and / or a comma-separated
tag list:

rustic -r /srv/rustic-repo copy --repo2 /srv/rustic-repo-copy --host luigi
--path /srv --tag foo,bar↪

It is also possible to explicitly specify the list of snapshots to copy, in which case only these instead of
all snapshots will be copied:

rustic -r /srv/rustic-repo copy --repo2 /srv/rustic-repo-copy 410b18a2
4e5d5487 latest↪

9.4 Ensuring deduplication for copied snapshots

Different repositories usually have different parameters for splitting larger files into smaller chunks.
When copying snapshots between arbitrary repository, deduplication between snapshots from the
source and destination repository doesn't work unless the repositories share the same parameters,
the so-called chunker parameters.

Rustic enforces identical chunker parameters - if you try to copy to a repository with different chunker
parameter, you get an error like

cannot copy to repository with different chunker parameter (re-chunking not
implemented)!↪

Note: Currently it is not possible to change the chunker parameters of existing repositories (re-
chunking is not yet implemented).

36

To create a repository with identical chunker parameters to a source repository, don't initialize
the target repository, but instead run the first copy command with the --init option. This option
initializes non-existing repositories with the correct chunker parameter:

rustic copy --init [SNAPSHOTS]

Note: The target repositories must be defined in the config file.

9.5 Checking integrity and consistency

Imagine your repository is saved on a server that has a faulty hard drive, or even worse, attackers
get privileged access and modify the files in your repository with the intention to make you restore
malicious data:

echo "boom" > /srv/rustic-
repo/index/de30f3231ca2e6a59af4aa84216dfe2ef7339c549dc11b09b84000997b139628↪

Trying to restore a snapshot which has been modified as shown above will yield an error:

$ rustic -r /srv/rustic-repo --no-cache restore c23e491f --target
/tmp/restore-work↪

...
Fatal: unable to load index de30f323: load <index/de30f3231c>: invalid data

returned↪

In order to detect these things before they become a problem, it's a good idea to regularly use the
check command to test whether your repository is healthy and consistent, and that your precious
backup data is unharmed. There are two types of checks that can be performed:

• Structural consistency and integrity, e.g. snapshots, trees and pack files (default)
• Integrity of the actual data that you backed up (enabled with flags, see below)

To verify the structure of the repository, issue the check command. If the repository is damaged like
in the example above, check will detect this and yield the same error as when you tried to restore:

$ rustic -r /srv/rustic-repo check
...
load indexes
error: error loading index de30f323: load <index/de30f3231c>: invalid data

returned↪

Fatal: LoadIndex returned errors

If the repository structure is intact, rustic will show that no errors were found:

$ rustic -r /src/rustic-repo check
...
load indexes
check all packs
check snapshots, trees and blobs
no errors were found

By default, the check command does not verify that the actual pack files on disk in the repository
are unmodified, because doing so requires reading a copy of every pack file in the repository. To tell
rustic to also verify the integrity of the pack files in the repository, use the --read-data flag:

$ rustic -r /srv/rustic-repo check --read-data
...
load indexes
check all packs

37

check snapshots, trees and blobs
read all data
[0:00] 100.00% 3 / 3 items
duration: 0:00
no errors were found

Note: Since --read-data has to download all pack files in the repository, beware that it might incur
higher bandwidth costs than usual and also that it takes more time than the default check.

Alternatively, use the --read-data-subset parameter to check only a subset of the repository pack
files at a time. It supports three ways to select a subset. One selects a specific part of pack files, the
second and third selects a random subset of the pack files by the given percentage or size.

Use --read-data-subset=n/t to check a specific part of the repository pack files at a time. The
parameter takes two values, n and t. When the check command runs, all pack files in the repository
are logically divided in t (roughly equal) groups, and only files that belong to group number n
are checked. For example, the following commands check all repository pack files over 5 separate
invocations:

rustic -r /srv/rustic-repo check --read-data-subset=1/5
rustic -r /srv/rustic-repo check --read-data-subset=2/5
rustic -r /srv/rustic-repo check --read-data-subset=3/5
rustic -r /srv/rustic-repo check --read-data-subset=4/5
rustic -r /srv/rustic-repo check --read-data-subset=5/5

Use --read-data-subset=x% to check a randomly choosen subset of the repository pack files. It
takes one parameter, x, the percentage of pack files to check as an integer or floating point number.
This will not guarantee to cover all available pack files after sufficient runs, but it is easy to automate
checking a small subset of data after each backup. For a floating point value the following command
may be used:

rustic -r /srv/rustic-repo check --read-data-subset=2.5%

When checking bigger subsets you most likely want to specify the percentage as an integer:

rustic -r /srv/rustic-repo check --read-data-subset=10%

Use --read-data-subset=nS to check a randomly chosen subset of the repository pack files. It takes
one parameter, nS, where 'n' is a whole number representing file size and 'S' is the unit of file size
(K/M/G/T) of pack files to check. Behind the scenes, the specified size will be converted to percentage
of the total repository size. The behaviour of the check command following this conversion will be
the same as the percentage option above. For a file size value the following command may be used:

rustic -r /srv/rustic-repo check --read-data-subset=50M
rustic -r /srv/rustic-repo check --read-data-subset=10G

9.6 Key - Manage repository keys

The key command allows you to set multiple access keys or passwords per repository. In fact, you
can use the list, add, remove, and passwd (changes a password) sub-commands to manage these
keys very precisely:

$ rustic -r /srv/rustic-repo key list
enter password for repository:
ID User Host Created

--
*eb78040b username kasimir 2015-08-12 13:29:57

38

$ rustic -r /srv/rustic-repo key add
enter password for repository:
enter password for new key:
enter password again:
saved new key as <Key of username@kasimir, created on 2015-08-12
13:35:05.316831933 +0200 CEST>↪

$ rustic -r /srv/rustic-repo key list
enter password for repository:
ID User Host Created

--
5c657874 username kasimir 2015-08-12 13:35:05

*eb78040b username kasimir 2015-08-12 13:29:57

Note: that the currently used key is indicated by an asterisk (*).

9.7 Upgrading the repository format version

Repositories created using earlier rustic versions use an older repository format version and have to
be upgraded to allow using all new features. Upgrading must be done explicitly as a newer repository
version increases the minimum rustic version required to access the repository. For example the
repository format version 2 is only readable using rustic 0.2.0 or newer.

Upgrading to repo version 2 is a two step process: first run migrate upgrade_repo_v2 which will
check the repository integrity and then upgrade the repository version. Repository problems must
be corrected before the migration will be possible. After the migration is complete, run prune to
compress the repository metadata. To limit the amount of data rewritten in at once, you can use the
prune --max-repack-size size parameter, see :ref:customize-pruning for more details.

File contents stored in the repository will not be rewritten, data from new backups will be compressed.
Over time more and more of the repository will be compressed. To speed up this process and compress
all not yet compressed data, you can run prune --repack-uncompressed.

39

Chapter 10

Restore - Restoring from backup

Restoring from a snapshot is as easy as it sounds, just use the following command to restore the
contents of the latest snapshot to /tmp/restore-work:

$ rustic -r /srv/rustic-repo restore 79766175 /tmp/restore-work
enter password for repository:
restoring <Snapshot of [/home/user/work] at 2015-05-08 21:40:19.884408621

+0200 CEST> to /tmp/restore-work↪

Use the word latest to restore the last backup. You can also combine latest with the --filter-
host and --filter-path filters to choose the last backup for a specific host, path or both.

$ rustic -r /srv/rustic-repo restore latest /tmp/restore-art --filter-path
"/home/art" --filter-host luigi↪

enter password for repository:
restoring <Snapshot of [/home/art] at 2015-05-08 21:45:17.884408621 +0200

CEST> to /tmp/restore-art↪

Use --glob (pattern to exclude/include (can be specified multiple times)) to restrict the restore to a
subset of files in the snapshot. For example, to restore a single file:

$ rustic -r /srv/rustic-repo restore 79766175 /tmp/restore-work --glob
/work/foo↪

enter password for repository:
restoring <Snapshot of [/home/user/work] at 2015-05-08 21:40:19.884408621

+0200 CEST> to /tmp/restore-work↪

This will restore the file foo to /tmp/restore-work/work/foo.

You can use the command rustic ls latest

the path to the file within the snapshot. This path you can then pass to --glob in verbatim to only
restore the single file or directory.

There is case insensitive variants of --glob called --iglob. This option will behave the same way
but ignore the casing of paths.

10.1 Restore using mount

NOTE: rustic doesn't support mount at this point, please use restic to invoke this operation for
the time being. We are working on a mount implementation for rustic.

40

Browsing your backup as a regular file system is also very easy. First, create a mount point such as
/mnt/rustic and then use the following command to serve the repository with FUSE:

$ mkdir /mnt/rustic
$ restic -r /srv/rustic-repo mount /mnt/rustic
enter password for repository:
Now serving /srv/rustic-repo at /mnt/rustic
Use another terminal or tool to browse the contents of this folder.
When finished, quit with Ctrl-c here or umount the mountpoint.

Mounting repositories via FUSE is only possible on Linux, macOS and FreeBSD. On Linux, the fuse
kernel module needs to be loaded and the fusermount command needs to be in the PATH. On macOS,
you need FUSE for macOS. On FreeBSD, you may need to install FUSE and load the kernel module
(kldload fuse).

10.2 Printing files to stdout

Sometimes it's helpful to print files to stdout so that other programs can read the data directly. This
can be achieved by using the dump command, like this:

rustic -r /srv/rustic-repo dump latest production.sql | mysql

If you have saved multiple different things into the same repo, the latest snapshot may not be the
right one. For example, consider the following snapshots in a repo:

$ rustic -r /srv/rustic-repo snapshots
ID Date Host Tags Directory
--
562bfc5e 2018-07-14 20:18:01 mopped /home/user/file1
bbacb625 2018-07-14 20:18:07 mopped /home/other/work
e922c858 2018-07-14 20:18:10 mopped /home/other/work
098db9d5 2018-07-14 20:18:13 mopped /production.sql
b62f46ec 2018-07-14 20:18:16 mopped /home/user/file1
1541acae 2018-07-14 20:18:18 mopped /home/other/work
--

Here, rustic would resolve latest to the snapshot 1541acae, which does not contain the file we'd
like to print at all (production.sql). In this case, you can pass rustic the snapshot ID of the snapshot
you like to restore:

rustic -r /srv/rustic-repo dump 098db9d5 production.sql | mysql

Or you can pass rustic a path that should be used for selecting the latest snapshot. The path must
match the patch printed in the ”Directory” column, e.g.:

rustic -r /srv/rustic-repo dump --path /production.sql latest production.sql |
mysql↪

It is also possible to dump the contents of a whole folder structure to stdout. To retain the information
about the files and folders rustic will output the contents in the tar (default) or zip format:

rustic -r /srv/rustic-repo dump latest /home/other/work > restore.tar

rustic -r /srv/rustic-repo dump -a zip latest /home/other/work > restore.zip

41

https://osxfuse.github.io/

Chapter 11

Forget - Removing backup snapshots

All backup space is finite, so rustic allows removing old snapshots. This can be done either manually
(by specifying a snapshot ID to remove) or by using a policy that describes which snapshots to forget.
For all remove operations, two commands need to be called in sequence: forget to remove snapshots,
and prune to remove the remaining data that was referenced only by the removed snapshots. The
latter can be automated with the --prune option of forget, which runs prune automatically if any
snapshots were actually removed.

Pruning snapshots can be a time-consuming process, depending on the number of snapshots and
data to process. During a prune operation, the repository is locked and backups cannot be completed.
Please plan your pruning so that there's time to complete it and it doesn't interfere with regular
backup runs.

It is advisable to run rustic check after pruning, to make sure you are alerted, should the internal
data structures of the repository be damaged.

11.1 Remove a single snapshot

The command snapshots can be used to list all snapshots in a repository like this:

$ rustic -r /srv/rustic-repo snapshots
enter password for repository:
ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
bdbd3439 2015-05-08 21:45:17 luigi /home/art
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

In order to remove the snapshot of /home/art, use the forget command and specify the snapshot
ID on the command line:

$ rustic -r /srv/rustic-repo forget bdbd3439
enter password for repository:
removed snapshot bdbd3439

Afterwards this snapshot is removed:

$ rustic -r /srv/rustic-repo snapshots
enter password for repository:

42

ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

But the data that was referenced by files in this snapshot is still stored in the repository. To cleanup
unreferenced data, the prune command must be run:

$ rustic -r /srv/rustic-repo prune
enter password for repository:
repository 33002c5e opened successfully, password is correct
loading all snapshots...
loading indexes...
finding data that is still in use for 4 snapshots
[0:00] 100.00% 4 / 4 snapshots
searching used packs...
collecting packs for deletion and repacking
[0:00] 100.00% 5 / 5 packs processed

to repack: 69 blobs / 1.078 MiB
this removes: 67 blobs / 1.047 MiB
to delete: 7 blobs / 25.726 KiB
total prune: 74 blobs / 1.072 MiB
remaining: 16 blobs / 38.003 KiB
unused size after prune: 0 B (0.00% of remaining size)

repacking packs
[0:00] 100.00% 2 / 2 packs repacked
rebuilding index
[0:00] 100.00% 3 / 3 packs processed
deleting obsolete index files
[0:00] 100.00% 3 / 3 files deleted
removing 3 old packs
[0:00] 100.00% 3 / 3 files deleted
done

Afterwards the repository is smaller.

You can automate this two-step process by using the --prune switch to forget:

$ rustic forget --keep-last 1 --prune
snapshots for host mopped, directories /home/user/work:

keep 1 snapshots:
ID Date Host Tags Directory
--
4bba301e 2017-02-21 10:49:18 mopped /home/user/work

remove 1 snapshots:
ID Date Host Tags Directory
--
8c02b94b 2017-02-21 10:48:33 mopped /home/user/work

1 snapshots have been removed, running prune

43

loading all snapshots...
loading indexes...
finding data that is still in use for 1 snapshots
[0:00] 100.00% 1 / 1 snapshots
searching used packs...
collecting packs for deletion and repacking
[0:00] 100.00% 5 / 5 packs processed

to repack: 69 blobs / 1.078 MiB
this removes 67 blobs / 1.047 MiB
to delete: 7 blobs / 25.726 KiB
total prune: 74 blobs / 1.072 MiB
remaining: 16 blobs / 38.003 KiB
unused size after prune: 0 B (0.00% of remaining size)

repacking packs
[0:00] 100.00% 2 / 2 packs repacked
rebuilding index
[0:00] 100.00% 3 / 3 packs processed
deleting obsolete index files
[0:00] 100.00% 3 / 3 files deleted
removing 3 old packs
[0:00] 100.00% 3 / 3 files deleted
done

11.2 Removing snapshots according to a policy

Removing snapshots manually is tedious and error-prone, therefore rustic allows specifying a policy
(one or more --keep-* options) for which snapshots to keep. You can for example define how
many hourly, daily, weekly, monthly and yearly snapshots to keep, and any other snapshots will be
removed.

Warning: If you use an append-only repository with policy-based snapshot removal, some security
considerations are important. Please refer to the section below for more information.

Note: You can always use the --dry-run option of the forget command, which instructs rustic to
not remove anything but instead just print what actions would be performed.

The forget command accepts the following policy options:

• --keep-last n keep the n last (most recent) snapshots.
• --keep-hourly n for the last n hours which have one or more snapshots, keep only the most

recent one for each hour.
• --keep-daily n for the last n days which have one or more snapshots, keep only the most

recent one for each day.
• --keep-weekly n for the last n weeks which have one or more snapshots, keep only the most

recent one for each week.
• --keep-monthly n for the last n months which have one or more snapshots, keep only the

most recent one for each month.
• --keep-yearly n for the last n years which have one or more snapshots, keep only the most

recent one for each year.
• --keep-tag keep all snapshots which have all tags specified by this option (can be specified

multiple times).
• --keep-within duration keep all snapshots having a timestamp within the specified duration

of the latest snapshot, where duration is a number of years, months, days, and hours. E.g.

44

2y5m7d3h will keep all snapshots made in the two years, five months, seven days and three
hours before the latest (most recent) snapshot.

• --keep-within-hourly duration keep all hourly snapshots made within the specified dura-
tion of the latest snapshot. The duration is specified in the same way as for --keep-within
and the method for determining hourly snapshots is the same as for --keep-hourly.

• --keep-within-daily duration keep all daily snapshots made within the specified duration
of the latest snapshot.

• --keep-within-weekly duration keep all weekly snapshots made within the specified du-
ration of the latest snapshot.

• --keep-within-monthly duration keep all monthly snapshots made within the specified
duration of the latest snapshot.

• --keep-within-yearly duration keep all yearly snapshots made within the specified dura-
tion of the latest snapshot.

Note: All calendar related options (--keep-{hourly,daily,...}) work on natural time bound-
aries and not relative to when you run forget. Weeks are Monday 00:00 to Sunday 23:59, days 00:00
to 23:59, hours :00 to :59, etc. They also only count hours/days/weeks/etc which have one or more
snapshots.

Note: All duration related options (--keep-{within,-*}) ignore snapshots with a timestamp in
the future (relative to when the forget command is run) and these snapshots will hence not be
removed.

Note: Specifying --keep-tag '' will match untagged snapshots only.

When forget is run with a policy, rustic first loads the list of all snapshots and groups them by their
host name and paths. The grouping options can be set with --group-by, e.g. using --group-by
paths,tags to instead group snapshots by paths and tags. The policy is then applied to each group
of snapshots individually. This is a safety feature to prevent accidental removal of unrelated backup
sets. To disable grouping and apply the policy to all snapshots regardless of their host, paths and
tags, use --group-by '' (that is, an empty value to --group-by).

Additionally, you can restrict the policy to only process snapshots which have a particular hostname
with the --host parameter, or tags with the --tag option. When multiple tags are specified, only
the snapshots which have all the tags are considered. For example, the following command removes
all but the latest snapshot of all snapshots that have the tag foo:

rustic forget --tag foo --keep-last 1

This command removes all but the last snapshot of all snapshots that have either the foo or bar tag
set:

rustic forget --tag foo --tag bar --keep-last 1

To only keep the last snapshot of all snapshots with both the tag foo and bar set use:

rustic forget --tag foo,bar --keep-last 1

To ensure only untagged snapshots are considered, specify the empty string '' as the tag.

rustic forget --tag '' --keep-last 1

Let's look at a simple example: Suppose you have only made one backup every Sunday for 12 weeks:

rustic snapshots repository f00c6e2a opened successfully, password is correct
ID Time Host Tags Paths↪

45

0a1f9759 2019-09-01 11:00:00 mopped /home/user/work 46cfe4d5 2019-09-08
11:00:00 mopped /home/user/work f6b1f037 2019-09-15 11:00:00 mopped
/home/user/work eb430a5d 2019-09-22 11:00:00 mopped /home/user/work
8cf1cb9a 2019-09-29 11:00:00 mopped /home/user/work 5d33b116 2019-10-06
11:00:00 mopped /home/user/work b9553125 2019-10-13 11:00:00 mopped
/home/user/work e1a7b58b 2019-10-20 11:00:00 mopped /home/user/work
8f8018c0 2019-10-27 11:00:00 mopped /home/user/work 59403279 2019-11-03
11:00:00 mopped /home/user/work dfee9fb4 2019-11-10 11:00:00 mopped
/home/user/work e1ae2f40 2019-11-17 11:00:00 mopped /home/user/work

↪

↪

↪

↪

↪

↪

↪

↪

12 snapshots

Then forget --keep-daily 4 will keep the last four snapshots, for the last four Sundays, and
remove the other snapshots:

$ rustic forget --keep-daily 4 --dry-run repository f00c6e2a opened
successfully, password is correct Applying Policy: keep the last 4 daily
snapshots keep 4 snapshots: ID Time Host Tags Reasons Paths

↪

↪

8f8018c0 2019-10-27 11:00:00 mopped daily snapshot /home/user/work 59403279
2019-11-03 11:00:00 mopped daily snapshot /home/user/work dfee9fb4
2019-11-10 11:00:00 mopped daily snapshot /home/user/work e1ae2f40
2019-11-17 11:00:00 mopped daily snapshot /home/user/work

↪

↪

↪

4 snapshots

remove 8 snapshots: ID Time Host Tags Paths

0a1f9759 2019-09-01 11:00:00 mopped /home/user/work 46cfe4d5 2019-09-08
11:00:00 mopped /home/user/work f6b1f037 2019-09-15 11:00:00 mopped
/home/user/work eb430a5d 2019-09-22 11:00:00 mopped /home/user/work
8cf1cb9a 2019-09-29 11:00:00 mopped /home/user/work 5d33b116 2019-10-06
11:00:00 mopped /home/user/work b9553125 2019-10-13 11:00:00 mopped
/home/user/work e1a7b58b 2019-10-20 11:00:00 mopped /home/user/work

↪

↪

↪

↪

↪

8 snapshots

The processed snapshots are evaluated against all --keep-* options but a snapshot only need to
match a single option to be kept (the results are ORed). This means that the most recent snapshot on a
Sunday would match both hourly, daily and weekly --keep-* options, and possibly more depending
on calendar.

For example, suppose you make one backup every day for 100 years. Then forget --keep-daily 7
--keep-weekly 5 --keep-monthly 12 --keep-yearly 75 would keep the most recent 7 daily
snapshots and 4 last-day-of-the-week ones (since the 7 dailies already include 1 weekly). Additionally,
12 or 11 last-day-of-the-month snapshots will be kept (depending on whether one of them ends up
being the same as a daily or weekly). And finally 75 or 74 last-day-of-the-year snapshots are kept,
depending on whether one of them ends up being the same as an already kept snapshot. All other
snapshots are removed.

You might want to maintain the same policy as in the example above, but have irregular backups. For
example, the 7 snapshots specified with --keep-daily 7 might be spread over a longer period. If
what you want is to keep daily snapshots for the last week, weekly for the last month, monthly for the
last year and yearly for the last 75 years, you can instead specify forget --keep-within-daily
7d --keep-within-weekly 1m --keep-within-monthly 1y --keep-within-yearly 75y
(note that 1w is not a recognized duration, so you will have to specify 7d instead).

46

For safety reasons, rustic refuses to act on an ”empty” policy. For example, if one were to specify
--keep-last 0 to forget all snapshots in the repository, rustic will respond that no snapshots will
be removed. To delete all snapshots, use --keep-last 1 and then finally remove the last snapshot
manually (by passing the ID to forget).

11.3 Security considerations in append-only mode

Note: TL;DR: With append-only repositories, one should specifically use the --keep-within option
of the forget command when removing snapshots.

To prevent a compromised backup client from deleting its backups (for example due to a ransomware
infection), a repository service/backend can serve the repository in a so-called append-only mode.
This means that the repository is served in such a way that it can only be written to and read from,
while delete and overwrite operations are denied. rustic's rest-server features an append-only
mode, but few other standard backends do. To support append-only with such backends, one can use
rclone as a complement in between the backup client and the backend service.

• rust-server
• rclone

To remove snapshots and recover the corresponding disk space, the forget and prune commands
require full read, write and delete access to the repository. If an attacker has this, the protection
offered by append-only mode is naturally void. The usual and recommended setup with append-
only repositories is therefore to use a separate and well-secured client whenever full access to
the repository is needed, e.g. for administrative tasks such as running forget, prune and other
maintenance commands.

However, even with append-only mode active and a separate, well-secured client used for administra-
tive tasks, an attacker who is able to add garbage snapshots to the repository could bring the snapshot
list into a state where all the legitimate snapshots risk being deleted by an unsuspecting administrator
that runs the forget command with certain --keep-* options, leaving only the attacker's useless
snapshots.

For example, if the forget policy is to keep three weekly snapshots, and the attacker adds an empty
snapshot for each of the last three weeks, all with a timestamp (see the backup command's --time
option) slightly more recent than the existing snapshots (but still within the target week), then the
next time the repository administrator (or a scheduled job) runs the forget command with this
policy, the legitimate snapshots will be removed (since the policy will keep only the most recent
snapshot within each week). Even without running prune, recovering data would be messy and
some metadata lost.

To avoid this, forget policies applied to append-only repositories should use the --keep-within
option, as this will keep not only the attacker's snapshots but also the legitimate ones. Assuming the
system time is correctly set when forget runs, this will allow the administrator to notice problems
with the backup or the compromised host (e.g. by seeing more snapshots than usual or snapshots
with suspicious timestamps). This is, of course, limited to the specified duration: if forget --keep-
within 7d is run 8 days after the last good snapshot, then the attacker can still use that opportunity
to remove all legitimate snapshots.

11.4 Customize pruning

To understand the custom options, we first explain how the pruning process works:

1. All snapshots and directories within snapshots are scanned to determine which data is still in
use.

47

https://github.com/rustic-rs/rust-server/
https://rclone.org/commands/rclone_serve_restic/

2. For all files in the repository, rustic finds out if the file is fully used, partly used or completely
unused.

3. Completely unused files are marked for deletion. Fully used files are kept. A partially used file
is either kept or marked for repacking depending on user options.

Note that for repacking, rustic must download the file from the repository storage and re-upload
the needed data in the repository. This can be very time-consuming for remote repositories.

4. After deciding what to do, prune will actually perform the repack, modify the index according
to the changes and delete the obsolete files.

The prune command accepts the following options:

• --max-unused limit allow unused data up to the specified limit within the repository. This
allows rustic to keep partly used files instead of repacking them.

The limit can be specified in several ways:

– As an absolute size (e.g. 200M). If you want to minimize the space used by your repository,
pass 0 to this option.

– As a size relative to the total repo size (e.g. 10%). This means that after prune, at most 10%
of the total data stored in the repo may be unused data. If the repo after prune has a size
of 500MB, then at most 50MB may be unused.

– If the string unlimited is passed, there is no limit for partly unused files. This means that
as long as some data is still used within a file stored in the repo, rustic will just leave it there.
Use this if you want to minimize the time and bandwidth used by the prune operation.
Note that metadata will still be repacked. rustic tries to repack as little data as possible
while still ensuring this limit for unused data. The default value is 5%.

• --max-repack-size size if set limits the total size of files to repack. As prune first stores all
repacked files and deletes the obsolete files at the end, this option might be handy if you expect
many files to be repacked and fear to run low on storage.

• --repack-cacheable-only if set to true only files which contain metadata and would be
stored in the cache are repacked. Other pack files are not repacked if this option is set. This
allows a very fast repacking using only cached data. It can, however, imply that the unused
data in your repository exceeds the value given by --max-unused. The default value is false.

• --dry-run only show what prune would do.

• --verbose increased verbosity shows additional statistics for prune.

11.5 Recovering from ”no free space” errors

In some cases when a repository has grown large enough to fill up all disk space or the allocated
quota, then prune might fail to free space. prune works in such a way that a repository remains
usable no matter at which point the command is interrupted. However, this also means that prune
requires some scratch space to work.

In most cases it is sufficient to instruct prune to remove all packs marked for removal and use as
little scratch space as possible. Note that packs marked for removal are automatically removed by a
prune run once they are old enough. If you can guarantee that the repository is not used by parallel
processes, you can also use rustic prune --instant-delete.

To use as little scratch space as possibe, run rustic prune --max-repack-size 0. This removes
all unneeded packs without repacking partly used packs. Obviously, this can only work if several
snapshots have been removed using forget before. This then allows the prune command to actually

48

remove data from the repository. If the command succeeds, but there is still little free space, then
remove a few more snapshots and run prune again.

49

Chapter 12

Stories

Stories of people using rustic:

• economic side of hosting rustic repo in AWS Glacier
• technical side of migrating to Glacier, restoring and such

Some talks about restic can be found here

50

https://kmh.prasil.info/posts/rustic-cold-storage-glacier-economics/
https://kmh.prasil.info/posts/rustic-cold-storage-glacier-migration-configuration/
https://restic.readthedocs.io/en/latest/110_talks.html

	Introduction
	Contributing
	Frequently asked questions
	Comparison between rustic and restic

	Installation
	Nightly builds

	How to install shell completions
	Getting started
	Init - Preparing a new repository
	Local backend
	REST Server
	Other Services via rclone
	Cold storage
	Configuration file

	Backup - Backing up data
	Creating snapshots
	File change detection
	Dry Run
	Excluding Files
	Comparing Snapshots
	Backup special items and metadata
	Reading data from StdIn
	Tags for backup
	Scheduling backups
	Space requirements
	Environment Variables

	Miscellaneous - Working with repositories
	Listing snapshots
	Copying snapshots between repositories
	Filtering snapshots to copy
	Ensuring deduplication for copied snapshots
	Checking integrity and consistency
	Key - Manage repository keys
	Upgrading the repository format version

	Restore - Restoring from backup
	Restore using mount
	Printing files to stdout

	Forget - Removing backup snapshots
	Remove a single snapshot
	Removing snapshots according to a policy
	Security considerations in append-only mode
	Customize pruning
	Recovering from "no free space" errors

	Stories

